Tetrahedron Letters No.1, pp. 1-4, 1968. Pergamon Press Ltd. Printed in Great Britain.

3β -METHOXY- 5α -CHOLESTANE- 4β , 5α -DIOL AND RELATED COMPOUNDS

T. H. Campion and G. A. Morrison

Department of Organic Chemistry, University of Leeds (Received in UK 21 September 1967)

In connection with another project it recently became necessary for us to prepare 3\$\$-methoxy-5\$\$\alpha\$-cholestane-4\$\$,5\$\$\alpha\$-diol (IX). This structure has previously been assigned (1) to the compound of m.p. 172-3° and $[\alpha]_{\rm D}$ -19° obtained by sulphuric acid-catalysed cleavage of 4\$\alpha\$,5\$\$\alpha\$-epoxy-3\$\$-methoxycholestane (I). In our hands, repetition of this experiment afforded as the major product (75% yield) a compound with physical constants (m.p. 175-7°, $[\alpha]_{\rm D}$ -15°) in reasonable agreement with those described in the literature.

Microanalysis, however, indicated a molecular formula of $C_{28}H_{48}O_2$ rather than $C_{28}H_{50}O_3$, and the spectrosopic and chemical properties of the compound showed that it is to be formulated as 3β -methoxycholest-5en-4\alpha-ol (II; R = H). Thus, in its n.m.r. spectrum, the presence of a trisubstituted double bond could be inferred from the appearance of a signal at τ 4.25 due to the vinyl proton at C_6 . Both the alcohol (II; R = H) and the derived acetate (II; R = Ac) underwent epoxidation with m-chloroperbenzoic acid to afford the oxides (III; R = H) and (III; R = Ac) respectively. The α - configuration of the oxirane group in each of these compounds followed from their n.m.r. spectra (2). In both cases

1

the signal due to the 6 β -hydrogen atom was a doublet (\underline{J} = 4.5 c.p.s.), exhibited by the alcohol (III; R = H) at τ 6.78 and by the acetate (III; R = Ac) at τ 7.02. The appearance of a doublet (\underline{J} = 10.0 c.p.s.) at τ 4.61 in the spectrum of (III; R = Ac) due to the C₄-hydrogen atom established that the 4-acetoxyl group is equatorial and therefore α -oriented. Confirmation of these assignments was obtained by reduction of the oxides (III; R = H) and (III; R = Ac) with lithium aluminium hydride to afford, in each case, 3 β -methoxy-5 α -cholestane-4 α ,5 α -diol (IV), identical with the material obtained by hydroxylation of 3 β -methoxycholest-4-ene (V) with osmium tetroxide.

 3β -Methoxy- 5α -cholestane- 4β , 5α -diol (IX) was eventually prepared, starting from either $\beta\beta$ -methoxycholest-5-en-4 β -ol (VII; R = H) or its acetate (VII; R = Ac). A mixture of (VII; R = H) and (VII; R = Ac) is obtainable by oxidation of 3β -methoxycholest-5-ene (VI; R = Me, R' = H) with selenium dioxide in acetic acid (1); however, the configuration at C_{μ} of these compounds had not previously been defined unambiguously. In the present work, the alcohol (VII; R = H) was obtained also by selective methylation of cholest-5-en-3 β ,4 β -diol (VI; R = H, R' = OH) (3) with methyl iodide and silver oxide, thus establishing the correctness of the previous assignment. Epoxidation of the olefins (VII; R = H) and (VII; R = Ac) with m-chloroperbenzoic acid gave respectively the oxides (VIII; R = H) [n.m.r: doublet (J = 3 c.p.s.) at τ 6.65 (4 α -H); doublet (J = 4c.p.s.) at τ 6.92 (6β-H)] and (VIII; R = Ac) [n.m.r: doublet (J = 3 c.p.s.) at τ 5.59 (4 α -H); doublet (<u>J</u> = 3 c.p.s.) at τ 6.95 (6 β -H)]. Reduction of either of these epoxides with lithium aluminium hydride afforded the required diol (IX), m.p. 158-60°, $[\alpha]_{T}$ + 18°. Subsequently, this material was also obtained in very small yield by chromatography of the mother liquors remaining after crystallisation of the major product

V

X

X

X

(II; R = H) arising from the sulphuric acid-catalysed cleavage of the oxide (I).

Oxidation of either of the diols (IV) or (IX) with chromium trioxide gave 5α -hydroxy- 3β -methoxy- 5α -cholestan-4-one (X) as a stable crystalline compound, m.p. $178-179\cdot 5^{\circ}$, $[\alpha]_{\rm D} + 7\cdot 0^{\circ}$, $v_{\rm max.}$ (CCl₄) 1730 cm.⁻¹. This is clearly not identical with the unstable gummy solid $[v_{\rm max.}$ (CHCl₃) 1705cm.⁻¹], previously formulated as (X) (1). Dehydration of the ketol (X) with thionyl chloride and pyridine yielded 3β -methoxycholest-5-en-4-one (XI), m.p. $112-15^{\circ}$, $[\alpha]_{\rm D} -85^{\circ}$, $v_{\rm max.}$ (CCl₄) 1703 cm.⁻¹, $\lambda_{\rm max.}$ (EtOH) 243 mµ (log ε 3.86) [lit. (1) m.p. $118-19^{\circ}$, $[\alpha]_{\rm D} -85^{\circ}$, $v_{\rm max.}$ (CCl₄) 1685 cm.⁻¹, $\lambda_{\rm max.}$ (EtOH) 241 mµ (log ε 3.78)], which was also obtained by oxidation of 3β -methoxycholest-5-en-4 α -ol (II; R = H) with chromium trioxide. The unusually high frequencies of the carbonyl infrared absorption of the ketones (X) and (XI) may be attributed to the presence of an equatorial methoxyl group α - to the carbonyl function (4).

Satisfactory analyses and spectra were recorded for all the new compounds described.

References

B. R. Brown and D. M. L. Sandbach, <u>J. Chem. Soc.</u>, 5313 (1963).
cf. A. D. Cross, <u>J. Am. Chem. Soc.</u>, <u>84</u>, 3206 (1962).
O. Rosenheim and W. Starling, <u>J. Chem. Soc.</u>, 377 (1937).
S. S. Stradling and D. S. Tarbell, <u>J. Org. Chem.</u>, <u>29</u>, 1170 (1964).